Thermodynamic evolution theorem for chemical reactions
نویسندگان
چکیده
منابع مشابه
Evolution of DNA and RNA as catalysts for chemical reactions.
In vitro selection from combinatorial nucleic acid libraries has provided new RNA and DNA molecules that have catalytic properties. Catalyzed reactions now go far beyond self-modifying reactions of nucleic acid molecules. The future application of in vitro selected RNA and DNA catalysts in bioorganic synthesis appears promising.
متن کاملThermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains
Chemical reactions pertinent to karst systems divide broadly into (a) speciation reactions within aqueous solutions, (b) dissolution/precipitation and other acid/base reactions between aqueous solutions and solid minerals, and (c) redox reactions involving various carbon and sulfur-bearing species. As a backdrop against which other chemistry can be evaluated, selected phase diagrams and equilib...
متن کاملFluctuation theorem for nonequilibrium reactions.
A fluctuation theorem is derived for stochastic nonequilibrium reactions ruled by the chemical master equation. The theorem is expressed in terms of the generating and large-deviation functions characterizing the fluctuations of a quantity which measures the loss of detailed balance out of thermodynamic equilibrium. The relationship to entropy production is established and discussed. The fluctu...
متن کاملInternational chemical identifier for chemical reactions
An open-access software for creating a unique, text-based identifier for reactions (RInChI) was developed by the Goodman group at the University of Cambridge, based on the IUPAC International Chemical Identifier (InChI) standard. RInChIs describe the substances (reactants, products, reagents and solvents) participating in a reaction with their respective InChIs. The structure of RInChIs is anal...
متن کاملPredicting the evolution of fast chemical reactions in chaotic flows.
We study the fast irreversible bimolecular reaction in a two-dimensional chaotic flow. The reactants are initially segregated and together fill the whole domain. Simulations show that the reactant concentration decays exponentially with rate lambda and then crosses over to the algebraic law of chemical kinetics in the final stage of the reaction. We estimate the crossover time from the reaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Research
سال: 2020
ISSN: 2643-1564
DOI: 10.1103/physrevresearch.2.043367